
Lecture 18

Sn Discretization of the

1-D Spherical-Geometry Equations

1 Introduction

The purpose of the lecture is to describe the Sn discretization for the 1-D spherical-geometry

equations. These equations are significantly more complicated than the 1-D slab geometry

equations because of the angular derivative. Thus, in a limited sense, the spherical geometry

equation is more like a 2-D equation than a 1-D equation.

2 Angular Discretization

The monoenergetic transport equation in 1-D spherical-geometry is

µ

r2

∂

∂r
r2ψ +

1

r

∂

∂µ

[
(1− µ2)ψ

]
+ σtψ = 2π

∫ +1

−1

σs(µ
′ → µ)ψ(µ′) dµ′ +Q . (1)

We first discretize all of the terms in Eq. (1) except the angular derivative term in analogy

with the discretization of the slab-geometry equation. We start with a standard SN quadra-

ture set, {µm, wm}Nm=1, then use a Legendre polynomial expansion of degree L to represent
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the scattering and inhomogeneous sources, and collocate at the quadrature directions to

obtain

µm
r2

∂

∂r
r2ψm +

1

r

{
∂

∂µ

[
(1− µ2)ψ

]}
m

+ σtψm =
L∑
k=0

2k + 1

4π
(σkφk + qk)Pk(µm) , (2)

where Pk(µ) is the Legendre polynomial of degree k , the Legendre moments of the differ-

ential scattering cross-section are given by

σk = 2π

∫ +1

−1

σs(µ0)Pk(µ0) dµ0 , (3a)

the Legendre moments of the flux are given by

φk =
N∑
m=1

ψmPk(µ)wm , (3b)

and the Legendre moments of the inhomogeneous source are given by

qk = 2π

∫ +1

−1

Q(µ)Pk(µ) dµ . (3c)

We next discretize the angular derivative term. Assuming that the cosines are ordered in

ascending order, we define angular cell-edge cosines using renormalized quadrature weights

as follows:

µm+ 1
2
= µm− 1

2
+ ŵm , m = 1, N, µ 1

2
= −1 , (4)

where the renormalized weights sum to 2 rather than 4π:

ŵm =
wm
2π

. (5)
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For future reference, it is important to note that the m’th angular interval, (µm− 1
2
, µm+ 1

2
),

will contain µm, i.e., µm− 1
2
< µm < µm+ 1

2
, but µm will not be at the center of the interval,

i.e.,

µm �= (µm+ 1
2
+ µm− 1

2
)/2 . (6)

A naive discretization if the angular derivative term would take the following form:

1

r

{
∂

∂µ

[
(1− µ2)ψ

]}
m

=
1

r

[
(1− µ2

m+ 1
2

)ψm+ 1
2
− (1− µ2

m− 1
2

)ψm− 1
2

µm+ 1
2
− µm− 1

2

]
, (7)

where the cell-edge fluxes, ψm± 1
2
are as yet undefined. This discretization is undesirable

because it does not preserve the constant solution. To see this, we assume that the angular

flux, ψc, is constant in space and isotropic in angle. It is clear that
−→
Ω · −→

∇ψc = 0, but

evaluating our discretization for this quantity, we get

[
Ω · −→∇ψc

]
m

=
µm
r2

∂

∂r
r2ψc +

1

r

[
(1− µ2

m+ 1
2

)ψc − (1− µ2
m− 1

2

)ψc

µm+ 1
2
− µm− 1

2

]
,

= µm
2

r
ψc − 1

r

[
µ2
m+ 1

2

− µ2
m− 1

2

µm+ 1
2
− µm− 1

2

]
ψc ,

= µm
2

r
ψc −

[
(µm+ 1

2
+ µm− 1

2
)/2
] 2
r
ψc . (8)

The right side of Eq. (8) will only be zero if Eq. (6) is satisfied. Since Eq. (6) is never

satisfied with a standard Sn quadrature set, it follows that the naive discretization does

not preserve the constant solution.

To remedy this situation, we re-express the Sn discretization for the angular derivative
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term as follows:

1

r

{
∂

∂µ

[
(1− µ2)ψ

]}
m

=
1

r

[
βm+ 1

2
ψm+ 1

2
− βm− 1

2
ψm− 1

2

wm

]
, (9)

where the β-coefficients are as yet undefined. Evaluating
−→
Ω ·−→∇ψc using the discretization

defined by Eq. (9), we obtain

[
Ω · −→∇ψc

]
m

=
µm
r2

∂

∂r
r2ψc +

1

r

[
βm+ 1

2
ψc − βm− 1

2
ψc

wm

]
,

= µm
2

r
ψc − 1

r

[
βm+ 1

2
− βm− 1

2

wm

]
ψc . (10)

We obtain a recursion relationship for the β-coefficients by requiring that the right side of

Eq. (10) be zero, or equivalently, that the constant solution be preserved. The resulting

recursion relationship is

βm+ 1
2
= βm− 1

2
− 2µmwm . (11)

To begin the recursion, we set β 1
2
= 0 on purely physical grounds, namely, the first and

last β-coefficients must be zero to ensure particle conservation. This follows from the fact

that

2π

∫ +1

−1

∂

∂µ

[
(1− µ2)ψ

]
dµ = 2π

∣∣+1
−1(1− µ2)ψ = 0 . (12)

Integrating Eq. (9) over all directions using the quadrature formula, and assuming that

βN+ 1
2
= β 1

2
= 0, we get the discrete equivalent of Eq. (12):

N∑
m=1

{
∂

∂µ

[
(1− µ2)ψ

]}
m

wm = βN+ 1
2
ψN+ 1

2
− β 1

2
ψ 1

2
= 0 . (13)
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Since standard Sn quadrature sets are required to be symmetric about µ = 0, the last

β-coefficient generated with Eq. (11) will be zero whenever the first coefficient is zero.

Thus we see that the β-coefficients are uniquely determined by requiring that the constant

solution be preserved and that the discretization be conservative. This is very elegant, but

it does not help us to see how the original derivative is being approximated. To achieve

a better understanding, we first note that one can define a differential equation for the

quantity, γ = 1− µ2, over the interval, [−1,+1], as follows:

∂

∂γ
= −2µ , γ(−1) = 0. (14)

We next note that the Sn discretization for the angular derivative term can be re-expressed

in the following alternate form:

1

r

{
∂

∂µ

[
(1− µ2)ψ

]}
m

=
1

r

[
γm+ 1

2
ψm+ 1

2
− γm− 1

2
ψm− 1

2

ŵm

]
, (15)

where

γm+ 1
2
= γm− 1

2
− 2µmŵm , m = 1, N, γ 1

2
= 0. (16)

Thus we see that the Sn discretization for the angular derivative term is equivalent to using

discrete values of γ obtained by solving a differential equation for gamma via a quadrature

integration. Substituting from Eq. (9) into Eq. (2) we get the final form of the Sn equations:

µm
r2

∂

∂r
r2ψm +

1

r

(
βm+ 1

2
ψm+ 1

2
− βm+ 1

2
ψm− 1

2

wm

)
+ σtψm =

L∑
k=0

2k + 1

4π
(σkφk + qk)Pk(µm) ,

(17)
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We next consider the definition of the cell-edge angular fluxes, ψm± 1
2
. We will present

three possible definitions. The first is just the step method, which states that the outflow

value is equal to the average value. However, we must establish whether ψm− 1
2
or ψm+ 1

2
is

the outflow value. Recalling a previous lecture on the
−→
Ω · −→∇ operator in 1-D spherical-

geometry, we recall that a particle entering a voided sphere with direction µ = −1 is directed

toward the origin, and remains in direction µ = −1 until it passes through the origin. As

it passes through the origin, it transitions to the direction µ = +1 and stays in direction

µ = +1 until it passes out of the sphere. A particle that enters a voided sphere in any

direction other than µ = −1, continuously changes its µ-coordinate as it streams. More

specifically, this coordinate continuously increases, asymptotically approaching µ = +1

as the total distance traveled in the sphere increases without bound. Thus the angular

derivative term represents a type of advection operator that “advects” particles in the

direction of increasing µ. This means that ψm− 1
2
is the inflow flux and ψm+ 1

2
is the outflow

flux in angular cell m. Applying the step discretization, we get

ψm = ψm+ 1
2
, m = 1,M. (18)

Substituting from Eq. (18) into Eq. (9), we get the following discretization for the angular

deivative:

1

r

{
∂

∂µ

[
(1− µ2)ψ

]}
m

=
1

r

[
βm+ 1

2
ψm − βm− 1

2
ψm− 1

2

wm

]
, (19)

The step or upwind assumption closes the semi-discrete S−n system of equations.
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Another obvious possiblity for defining the cell-edge angular fluxes is the diamond

scheme:

ψm = (ψm+ 1
2
− ψm− 1

2
)/2 , m = 1,M. (20)

Substituting from Eq. (20) into Eq. (9), we get the following discretization for the angular

derivative:

1

r

{
∂

∂µ

[
(1− µ2)ψ

]}
m

=
1

r

[
βm+ 1

2
(2ψm − ψm− 1

2
)− βm− 1

2
ψm−1

wm

]
, (21)

The diamond assumption does not close the semi-discrete Sn system of equations because

ψ 1
2
appears in the equation for ψ1. To close the system, we must define ψ 1

2
, which is called

the starting direction flux. The simplest way to do this is to use the so-called “step-start”

definition:

ψ 1
2
− ψ1 . (22)

This is equivalent to simply using step differencing in the first angular cell. A much more

accurate treatment is to include an equation for the ψ 1
2
, which corresponds to mu = −1.

It is important to remember that to obtain such an equation, we first express the transport

equation in the non-conservative form:

µ
∂ψ

∂r
+

1− µ2

r

∂ψ

∂µ
+ σtψ = 2π

∫ +1

−1

σs(µ
′ → µ)ψ(µ′) dµ′ +Q . (23)

Evaluating Eq. (24) at µ = 1 and assuming that ∂ψ
∂µ

is bounded, we obtain the starting
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direction flux equation:

−∂ψ
∂r

+ σtψ = 2π

∫ +1

−1

σs(µ
′ → µ)ψ(µ′) dµ′ +Q . (24)

Note that this is actually the slab geometry equation. It is important to note that the

starting direction flux is not part of the quadrature set, i.e., it has no weight. This flux

satisfies the slab geometry equation because it is assumed to have a bounded angular

derivative. This precludes a delta-function angular dependence. Problems with angular

delta-function sources or incident fluxes along µ− = 1 cannot be directly solved using

the Sn method. The uncollided singular components of such solutions should be specially

treated, and the Sn method used only to compute the collided flux component.

A more accurate definition for the cell-edge angular fluxes arises from the observation

that standard Sn quadrature points do not lie at the center of the angular cells. Thus

we use the relationship between the quadrature cosines and the edge cosines to relate the

cell-center and cell-edge angular fluxes:

ψm =
1 + αm

2
ψm− 1

2
+

1 + αm
2

ψm+ 1
2
, m = 1,M, (25)

where

µm =
1 + αm

2
µm− 1

2
+

1 + αm
2

mum+ 1
2
, m = 1,M, (26)

or equivalently,

αm =
2µm − (µm+ 1

2
+ µm− 1

2
)

µm+ 1
2
+ µm− 1

2

, m = 1,M. (27)
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This “weighted-diamond” scheme also requires the starting direction flux to close the equa-

tions. It is the preferred scheme because it has a significant advantage over the step and

diamond schemes in the diffusion limit. This will be discussed in a later lecture.

3 Spatial Discretization

In this section, we spatially discretize the Sn equations using the diamond-difference ap-

proximation. We begin by exactly integrating Eq. (17) over the spherical volume associated

with the interval [ri− 1
2
, ri+ 1

2
]:

µm

(
Ai+ 1

2
ψi+ 1

2
,m − Ai− 1

2
ψi− 1

2
,m

)
+

∆Ai
2

(
βm+ 1

2
ψi,m+ 1

2
− βm+ 1

2
ψi,m− 1

2

wm

)
+ σtψi,mVi =

L∑
k=0

2k + 1

4π
(σkφi,k + qi,k)Vi Pk(µm) , (28)

where

Ai± 1
2
= 4πr2

i± 1
2
, (29a)

∆Ai = Ai+ 1
2
− Ai− 1

2
, (29b)

Vi =
4π

3

(
r3
i+ 1

2
− r3

i− 1
2

)
, (29c)

ψi,m+ 1
2
=

4π

∆Ai

∫ r
i+1

2

r
i− 1

2

rψm+ 1
2
dr , (29d)

ψi,m =
4π

Vi

∫ r
i+1

2

r
i− 1

2

r2ψm+ 1
2
dr , (29e)
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φi,k =
4π

Vi

∫ r
i+1

2

r
i− 1

2

r2φk dr , (29f)

qi,k =
4π

Vi

∫ r
i+1

2

r
i− 1

2

r2qk dr . (29g)

Next we exactly integrate the starting direction flux equation over the interval, [ri− 1
2
, ri+ 1

2
]:

−ψi+ 1
2
, 1
2
− ψi− 1

2
, 1
2
+ σtψ

∗
i, 1

2
∆ri =

L∑
k=0

2k + 1

4π

(
σkφ

∗
i,k + q∗i,k

)
∆ri Pk(µm) , (30)

where

∆ri = ri+ 1
2
− ri− 1

2
, (31a)

ψ∗
i,m =

∫ r
i+1

2

r
i− 1

2

ψ 1
2
dr , (31b)

φ∗
i,k =

∫ r
i+1

2

r
i− 1

2

φi,k dr , (31c)

q∗i,k =
∫ r

i+1
2

r
i− 1

2

φi,k dr . (31d)

Note that no spatial approximations have been made at this point, but our equations are

not closed. To do this, we must relate the spatial cell-edge fluxes to the various types of

cell-centered fluxes. To do this, we use the diamond difference relationship:

ψi,m± 1
2
= (ψi+ 1

2
,m± 1

2
+ ψi− 1

2
,m± 1

2
)/2 , (32a)

ψi,m = (ψi+ 1
2
,m + ψi− 1

2
,m)/2 . (32b)
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φi,k = (φi+ 1
2
,k + φi− 1

2
,k)/2 . (32c)

ψ∗
i, 1

2
= (ψi+ 1

2
, 1
2
+ ψi− 1

2
, 1
2
)/2 , (32d)

φ∗
i,k = (φi+ 1

2
,k + φi− 1

2
,k)/2 . (32e)

Equations (32a) through (32e) close the system of Sn equations. Other discretizations such

as step and the discontinuous finite-element method can be used, but do not discuss these

in detail here.
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